
Projet de Calcul Scientifique

Signal et vibrations
Rallu Antoine

2019

Le projet comporte trois parties indépendantes, qui vous permettront d’appréhender pas à
pas l’intégration et la dérivation d’un signal numérique. Toutes vos réponses doivent être
justifiées, et les algorithmes doivent être présents et commentés dans votre compte-rendu.

1 Exemple de la corde vibrante
L’objet d’étude est une corde bi-encastrée de longueur H et de masse linéique µ.

Celle-ci possède des caractéristiques idéales, c’est-à-dire qu’elle est de section négligeable,
infiniment souple (relativement à la torsion transversale), parfaitement élastique, insen-
sible à la gravitation et soumise à la tension constante T . Nous étudions son faible
mouvement se produisant dans le plan (xy), voir figure 1.

x x + dx

~T(x + dx)

~T(x)

x

y

θ(x)

θ(x + dx)

Figure 1 – Corde vibrant transversalement

1

2 TRAITEMENT D’UN SIGNAL DISCRET 2

Question 1.1: Mise en équation du problème
(a) En effectuant un bilan des efforts sur un segment dx de cette corde, écrire

l’équation différentielle qui régit son mouvement transversal y(x, t).
(b) En déduire l’équation différentielle ordinaire (E) qui régit le mouvement de la

corde u(x) en régime harmonique en notant :

y(x, t) = u(x) ei ω t

(c) Quelles sont les conditions aux limites du problème ?
Question 1.2: Résolution analytique de (E)

(a) En résolvant (E), déterminer les p ∈ N valeurs propres ωp associées aux vecteurs
propres up(x).

(b) Tracer les trois premiers vecteurs propres (aussi appelées déformées modales)
et commenter leur allure.

Question 1.3: Détermination des racines de up
(a) Déterminer analytiquement les nœuds des vecteurs propres up(x).
(b) Retrouvez les nœuds des trois premiers modes par le schéma numérique (dont

l’ordre et la condition initiale seront précisés) de votre choix.
Question 1.4: Transformée de Fourier

(a) Calculer la transformée de Fourier de up(x) notée Up(ω).
(b) En déduire que son module |Up(ω)| s’écrit sous la forme :

|Up(ω)| = βp

∣∣∣∣∣∣

sin
(
ωH

2 + p π
2

)

(ωH)2 − (p π)2

∣∣∣∣∣∣

avec βp à déterminer en fonction de p et H.
(c) Tracer le spectre des les trois premiers modes et commenter les allures.

Question 1.5: Résolution numérique de (E)
(a) Par le schéma numérique de votre choix (à motiver), déterminer les trois pre-

mières déformées modales de (E).
(b) Faites varier le pas. Quelles sont les conséquences sur le temps de calcul et sur

la précision des résultats ?

2 Traitement d’un signal discret
Considérons la fonction vitesse v(t) telle que :

∀t ∈ [0, T0], v(t) = V0 cos (2π t) sin (2π t)2

Question 2.1: Linéariser v(t), puis calculer les fonctions accélération a(t) et déplace-
ment d(t) (en choisissant une condition initiale d(t = 0)) et tracer les trois courbes.

3 APPLICATION PRATIQUE AU CREUSEMENT D’UN TUNNEL 3

Question 2.2: Imaginons à présent que ce signal soit aquis à la fréquence d’échantillo-
nage fe = 1024Hz pendant T0 = 1 s.
(a) Calculer la période d’échantillonage Te et le nombre n de points.
(b) Tracer le signal (vk)k∈J0;nK ainsi discrétisé au cours du temps.

Question 2.3: Transformation de Fourier discrète par FFT (Fast Fourier Transform)
(a) Calculer la FFT (Vp)p∈J0;nK de (vk)k∈J0;nK.
(b) Tracer le spectre en fréquence de la vitesse. A quelles fréquences se trouvent les

maximas ? Comment l’expliquez-vous ?
Question 2.4: Calcul de l’accélération par FFT

(a) L’article [1] traite de la question de dériver un signal discret par FFT. En
appliquant la méthode décrite, calculer l’accélération (ak)k∈J0;nK.

(b) Tracer le spectre en fréquence de l’accélération. Comparer son spectre à celui
de la vitesse.

Question 2.5: Calcul du déplacement par FFT
(a) En vous inspirant de la méthode proposée dans [1] pour le calcul de la dérivée,

proposer un algorithme d’intégration par FFT pour le calcul du déplacement
(dk)k∈J0;nK.

(b) Tracer le spectre en fréquence du déplacement. Comparer son spectre à ceux
de la vitesse et de l’accélération.

3 Application pratique au creusement d’un tunnel
Lors du creusement à l’explosif d’un tunnel, un suivi des vibrations est fait en posant

des capteurs de vitesse.
Question 3.1: A partir du fichier que je vous ai transmis, vous devez déterminer :

(a) Le spectre en fréquence pour la vitesse.
(b) Le graphe de l’accélération au cours du temps.
(c) Le graphe du déplacement au cours du temps.

Question 3.2: A quels temps se trouvent les maxima en déplacement, vitesse et accé-
lération ?

Références
[1] Steven G. Johnson,Notes on FFT-based differentiation, (2011)

Notes on FFT-based differentiation

Steven G. Johnson, MIT Applied Mathematics

Created April, 2011, updated May 4, 2011.

Abstract
A common numerical technique is to differentiate some sampled function y(x) via fast Fourier trans-

forms (FFTs). Equivalently, one differentiates an approximate Fourier series. Equivalently, one differen-
tiates a trigonometric interpolation. These are also known as spectral differentiation methods. However,
the implementation of such methods is prey to common confusions due to the aliasing phenomenon
inherent in sampling, and the treatment of the maximum-frequency (Nyquist) component is especially
tricky. In this note, we review the basic ideas of spectral differentiation (for equally spaced samples) and
a correct resolution of the aliasing problems for implementing operations dy

dx
, d

2y
dx2

, d
dx

ˆ
c(x) dy

dx

˜
, and ∇2.

One surprising consequence of aliasing for the Nyquist component is that the sampled second-derivative
operation is not equivalent to two sampled first-derivative operations! The operation d

dx

ˆ
c(x) dy

dx

˜
is par-

ticularly subtle because of the interplay of aliasing and desired algebraic properties of the differential
operator. (Readers who simply want to know what algorithms to follow, rather than the details of the
derivations, can read the first two introductory paragraphs and then skip to the labelled Algorithm
boxes.)

1 Background
In spectral methods for differential equations, considering one dimension here for simplicity, one has a
periodic function y(x) with period L that one conceptually expands as a Fourier series:

y(x) =

∞∑

k=−∞
Yke

2πi
L kx

for Fourier coefficients Yk = 1
L

´ L
0
e−

2πi
L kxy(x) dx. One then wishes to apply differential operators like d

dx ,
d2

dx2 , and more generally d
dxc(x) d

dx [for some periodic function c(x)]. Differentiation is performed term-by-
term1 in Fourier domain, and multiplication by functions c(x) is done by transforming back to space domain
for the multiplication (equivalent to convolution in Fourier domain). For example,

d

dx
y(x) = y′(x) =

∞∑

k=−∞

(
2πi

L
k · Yk

)
e

2πi
L kx,

1You may have been disturbed by rumors from real analysts that differentiating a Fourier series term-by-term is not always
valid. Don’t worry. For one thing, even if we required pointwise convergence of the Fourier series, differentiating term-by-term
is valid for the y(x) that typically appear in practice, where y is usually continuous and y′ is at least piecewise differentiable.
More generally, in practical applications of Fourier analysis, such as for PDEs, we are ordinarily not interested in pointwise
convergence—we only care about “weak” convergence (equality when both sides are integrated against smooth, localized test
functions), in which case differentiation term-by-term is always valid for any generalized function y.

1

which is just a pointwise multiplication of each Yk by a term proportional to k.
To implement this on a computer, one approximates the Fourier series by a discrete Fourier transform

(DFT). That is, we replace the function y(x) by N discrete samples yn = y(nL/N) for n = 0, 1, . . . , N − 1,
and Yk is approximated by:

Yk =
1

N

N−1∑

n=0

yne
− 2πi

N nk,

a DFT (although sign and normalization conventions for the DFT vary2). The inverse transform (IDFT) to
compute yn from Yk is very similar:

yn =

N−1∑

k=0

Yke
+ 2πi

N nk.

On a computer, the nice thing about these expressions is that all the Yk can be computed from the yn, or
vice versa, in Θ(N logN) operations by a fast Fourier transform (FFT) algorithm. This makes working with
Fourier series practical: we can quickly transform back and forth between space domain [where multiplying
by functions like c(x) is easy] and Fourier domain [where operations like derivatives are easy]. Almost
invariably, FFT implementations compute DFTs and IDFTs in forms similar to these equations, with the
Yk coefficients arranged “in order” from k = 0 to N − 1, and this ordering turns out to make the correct
implementation of FFT-based differentiation more obscure.

In order to compute derivatives like y′(x), we need to do more than express yn. We need to use the
IDFT expression to define a continuous interpolation between the samples yn—this is called trigonometric
interpolation—and then differentiate this interpolation. At first glance, interpolating seems very straightfor-
ward: one simply evaluates the IDFT expression at non-integer n ∈ R. This indeed defines an interpolation,
but it is not the only interpolation, nor is it the best interpolation for this purpose. The reason that there
is more than one interpolation is due to aliasing : any term e+

2πi
N nkYk in the IDFT can be replaced by

e+
2πi
N n(k+mN)Yk for any integer m and still give the same samples yn, since e

2πi
N nmN = e2πinm = 1 for any

integers m and n. Essentially, adding the mN term to k means that the interpolated function y(x) just
oscillates m extra times in between the sample points, i.e. between n and n + 1, which has no effect on
yn but has a huge effect on derivatives. To resolve this ambiguity, one imposes additional criteria—e.g. a
bandlimited spectrum and/or minimizing some derivative of the interpolated y(x)—and we will then explore
the consequences of the disambiguated interpolation for various derivative operations.

2 Trigonometric interpolation
What is the right way to do trigonometric interpolation? We can define a more arbitrary interpolated
function y(x) (but still limited to only N frequency components) by substituting n = Nx/L into the IDFT

2In our FFTW implementation of FFTs, this DFT is termed an FFTW_FORWARD transform, but the 1/N normalization is
omitted and must be supplied by the user. (In computing derivatives by the procedures described below, the 1/N factor can
be combined at no cost with the multiplications by 2π/L.) The IDFT is termed an FFTW_BACKWARD transform. In Matlab, the
1/N normalization is moved from the DFT (Matlab’s fft function) to the IDFT (Matlab’s ifft function), which doesn’t affect
any of the procedures in this note. Beware that Matlab uses indices that start with 1 rather than 0, however: if z = fft(y) in
Matlab, then z(k+1) corresponds to NYk.

2

and allowing any arbitrary aliasing integer mk for each Yk:3

y(x) =
N−1∑

k=0

Yke
2πi
L (k+mkN)x.

Regardless of the values of mk, this gives the same sample points yn = y(nL/N), but changing mk greatly
modifies y(x) in between the samples. In order to uniquely determine the mk, a useful criterion is that we
wish to oscillate as little as possible between the sample points yn. One way to express this idea is to assume
that y(x) is bandlimited to frequencies |k + mkN | ≤ N/2. Another approach, that gives the same result
given this form of y(x) (i.e., what are the “best” N frequency components?), is to minimize the mean-square
slope

1

L

ˆ L

0

|y′(x)|2dx =
1

L

ˆ L

0

∣∣∣∣∣
N−1∑

k=0

2πi

L
(k +mkN)Yke

2πi
L (k+mkN)x

∣∣∣∣∣

2

dx

=
N−1∑

k=0

N−1∑

k′=0

1

L

ˆ L

0

2πi

L
(k +mkN)Yke

2πi
L (k+mkN)x 2πi

L
(k′ +mk′N)Yk′e

2πi
L (k′+mk′N)xdx

=

(
2π

L

)2 N−1∑

k=0

|Yk|2(k +mkN)2,

where in the last step we have used the orthogonality of the Fourier basis functions:
´ L
0
e

2πi
L (k+mkN)xe

2πi
L (k′+mk′N)xdx =

0 if k + mkN 6= k′ + mk′N , which for 0 ≤ k, k′ < N boils down to being zero for k 6= k′ (and giving L
for k = k′). From this expression, for a given set of coefficients Yk, the mean-square slope is minimized by
choosing mk that minimizes (k +mkN)2 for each k.

3Unfortunately, this is actually not the most general possible aliasing, because we are assigning only one mk to each k. More
generally, we could break each Yk among arbitrarily many aliases k +mN with amplitudes um,kYk, such that

P
m um,k = 1.

That is, we could write the most general trigonometric interpolation as:

y(x) =

N−1X
k=0

Yk

∞X
m=−∞

um,ke
2πi
L

(k+mN)x.

The mean-square slope is then
`
2π
L

´2PN−1
k=0 |Yk|2

P∞
m=−∞ |um,k|2(k +mN)2. We can eliminate the

P
m um,k = 1 constraint

by solving for u0,k = 1−Pm 6=0 um,k, yielding a mean-square slope

„
2π

L

«2 N−1X
k=0

|Yk|2
24˛̨̨̨˛̨1−X

m 6=0

um,k

˛̨̨̨
˛̨
2

k2 +
X
m 6=0

|um,k|2(k +mN)2

35 .
Minimizing this unconstrained expression is a straightforward calculus exercise, and yields um,k = ak/(k + mN)2, where
ak = 1/

P
m

1
(k+mN)2

: an infinite number of frequency components! (In fact, this interpolation is especially problematic,
because its second derivative y′′ actually diverges! By allowing infinitely many aliases, we are allowing any periodic function,
and the minimial-slope periodic interpolant is simply piecewise-linear interpolation, with infinite y′′ at the “kinks” at each
sample.) To restrict ourselves to a single nonzero um,k for each k, one possiblity is to restrict ourselves to one frequency
|k+mN | per Yk so that we are asking for the “best” choice of N frequency components in the minimal-slope sense. Of course,
if we further assume that the spectrum is bandlimited to |k +mN | ≤ N/2, that completely determines the aliasing question
by itself (except for the k = N/2 component, which can be determined by e.g. requiring that the interpolant be real given real
yn). Alternatively, rather than any a priori bandlimiting assumption, we can obtain the desired result below if we minimize
the mean-square p-th derivative

´
|y(p)(x)|2dx, and then take the p→∞ limit.

3

If 0 ≤ k < N/2, then (k + mkN)2 is minimized for mk = 0. If N/2 < k < N , then (k + mkN)2 is
minimized for mk = −1. If k = N/2 (for even N), however, there is an ambiguity: either mk = 0 or −1
gives the same value (k+mkN)2 = (N/2)2. For this YN/2 term (the “Nyquist” term), we need to consider a
more general class of aliasing: we can arbitrarily split up the YN/2 term between m = 0 [2πiL

N
2 x = +πi

LNx,
positive frequency] and m = −1 [2πiL (N2 −N)x = −πiLNx, negative frequency]:

YN/2

[
ue+

πi
L Nx + (1− u)e−

πi
L Nx

]

where u is an arbitrary complex number to be determined, so that at sample points x = nL/N we get a
coefficient uYN/2+(1−u)YN/2 = YN/2 multiplying e±iπn = (−1)n and so recover the IDFT. The contribution
to the mean-square slope from this term is then

(
πN

L

)2

|YN/2|2
[
|u|2 + |1− u|2

]
,

which is minimized for u = 1/2: the YN/2 term should be equally split between the frequencies ±πNL , giving
a cos(πNx/L) term. This results in the unique “minimal-oscillation” trigonometric interpolation of
order N :

y(x) = Y0 +
∑

0<k<N/2

(
Yke

+ 2πi
L kx + YN−ke

− 2πi
L kx

)
+ YN/2 cos

(π
L
Nx
)
,

where the N/2 (Nyquist) term is absent for odd N .
As a useful side effect, this choice of trigonometric interpolation has the property that real-valued samples

yn (for which Y0 is real and YN−k = Yk) will result in a purely real-valued interpolation y(x) for all x. (A
number of FFT implementations, such as FFTW, offer specialized functions for the case where yn is real, in
which case they only compute Yk for k ≤ N/2 since the remaining Yk are redundant.)

3 First and second derivatives
Let us consider how to compute the derivatives y′n = y′(nL/N) and y′′n = y′′(nL/N) at the sample points,
using FFTs to compute the trigonometric interpolation coefficients. Counterintuitively, because of the YN/2
term for even N , the second derivative is not equivalent to performing the first-derivative operation twice!

The first derivative of y(x) is:

y′(x) =
∑

0<k<N/2

2πi

L
k
(
Yke

+ 2πi
L kx − YN−ke−

2πi
L kx

)
− π

L
NYN/2 sin

(π
L
Nx
)
.

When we evaluate this at the sample points x = nL/N , however, we obtain:

y′n = y′(nL/N) =
∑

0<k<N/2

2πi

L
k
(
Yke

+ 2πi
N nk − YN−ke−

2πi
N nk

)
=
N−1∑

k=0

Y ′ke
2πi
N nk,

where the YN/2 term has vanished because sin(πn) = 0.4 The resulting procedure to compute y′n via FFTs
is given in Algorithm 1.

4This is quite important, because any nonzero imaginary coefficient for Y N/2 in Y ′
N/2

would have caused problems, most
obviously that it would have made the derivative of real yn give a complex y′n. A nonzero real coefficient of Y N/2 would break
another symmetry: it would spoil the property that the derivative of an even function should be odd and vice versa; more
subtly, it would spoil a skew-symmetric property of the underlying d/dx operator.

4

Algorithm 1 Compute the sampled first derivative y′n ≈ y′(nL/N) from samples yn = y(nL/N).
1. Given yn for 0 ≤ n < N , use an FFT to compute Yk for 0 ≤ k < N .

2. Multiply Yk by 2πi
L k for k < N/2, by 2πi

L (k−N) for k > N/2, and by zero for k = N/2 (if N is even),
to obtain Y ′k.

3. Compute y′n from Y ′k via an inverse FFT.

Algorithm 2 Compute the sampled second derivative y′′n ≈ y′′(nL/N) from samples yn = y(nL/N).
1. Given yn for 0 ≤ n < N , use an FFT to compute Yk for 0 ≤ k < N .

2. Multiply Yk by −[2πL k]2 for k ≤ N/2 and by −[2πL (k −N)]2 for k > N/2 to obtain Y ′′k .

3. Compute y′′n from Y ′′k via an inverse FFT.

On the other hand, the second derivative of y(x) is

y′′(x) = −
∑

0<k<N/2

[
2π

L
k

]2 (
Yke

+ 2πi
L kx + YN−ke

− 2πi
L kx

)
−
[π
L
N
]2
YN/2 cos

(π
L
Nx
)
,

which at the sample points gives

y′′n = y′′(nL/N) = −
∑

0<k<N/2

[
2π

L
k

]2 (
Yke

+ 2πi
N nk + YN−ke

− 2πi
N nk

)
−
[π
L
N
]2
YN/2(−1)n =

N−1∑

k=0

Y ′′k e
2πi
N nk,

where the YN/2 term has not vanished. The resulting procedure to compute y′′n via FFTs is given in Al-
gorithm 2. Note that the YN/2 term is multiplied by −[πLN]2 regardless of whether we use −[2πL k]2 or
−[2πL (k − N)]2 for that term (i.e., it doesn’t matter whether we assign a positive or negative frequency to
k = N/2). Moreover, this procedure is not equivalent to performing the spectral first-derivative procedure
(Algorithm 1) twice (unless N is odd so that there is no YN/2 term) because the first-derivative operation
omits the YN/2 term entirely.5

Similarly for higher derivatives: the odd-order derivatives are treated similarly to the first derivative, and
the even-order derivatives are treated similarly to the second derivative.

5You might object that the YN/2 term goes to zero as N → ∞ anyway, assuming a convergent Fourier series, so why not
just drop it and make our spectral second derivative equivalent to two spectral first derivatives? This wouldn’t change the
asymptotic convergence rate of the approximation, but it would change a fundamental algebraic property of the d2

dx2
operator

on periodic functions: its nullspace. The nullspace of the exact operator consists only of constant functions (since other affine
functions are not periodic), corresponding to the zero coefficient of Y0 in y′′n. Discarding YN/2 would add another vector to the
nullspace, making the matrix representing our spectral derivative of yn qualitatively different from the operator it is supposed
to represent. This, in turn, would cause qualitative changes in any PDE or ODE that uses d2

dx2
. For example, the heat equation

∂y
∂t

= ∂2y
∂x2

is supposed to have solutions that decay to constants, but discarding YN/2 means that the Nyquist component would
not decay—as t→∞, you would get solutions that are the sum of a constant and a (−1)n oscillation. (Of course, the lack of
a YN/2 contribution in the first derivative means that we have changed the nullspace there, but for the first derivative there is
no good solution except to use an odd N , since any nonzero Y ′

N/2
would cause other problems as noted above.)

5

4 Position-varying differential operators d
dxc(x)

d
dx

A more complicated problem is the implementation of position-varying operators of the form d
dxc(x) d

dx , i.e.
when computing u(x) = [c(x)y′(x)]′ for a periodic coefficient function c(x). This kind of operator shows up,
for example, in the heat/diffusion equation with spatially varying diffusion coefficients, in wave equations
with spatially varying wave speeds, and in Poisson’s equation with a spatially varying permittivity.

Generally speaking, the technique to compute such operations efficiently in a spectral method is to
transform back and forth between space domain and Fourier domain: perform derivatives in Fourier domain
(where you just multiply Yk by the right factor) and multiply by c(x) in space domain [where you just
multiply pointwise by cn = c(nL/N)]. However, this is complicated by the YN/2 element: as explained in the
previous section, the special handling of YN/2 means that the second-derivative operation is not the same as
two first-derivative operations in sequence.

Let us consider what happens to the YN/2 term in y(x) when computing [c(x)y′(x)]′. This term con-
tributes:

[
−c(x)

π

L
NYN/2 sin

(π
L
Nx
)]′

= −c′(x)
π

L
NYN/2 sin

(π
L
Nx
)
− c(x)

[π
L
N
]2
YN/2 cos

(π
L
Nx
)
,

which at a sample point x = nL/N gives:

−cn
[π
L
N
]2
YN/2(−1)n,

where cn = c(nL/N), since the sine term vanishes. However, the obvious approach of simply adding this term
into the result is problematic for a subtle reason: it breaks the key self-adjointness (Hermitian) property
of the exact operator d

dxc(x) d
dx for real c(x). That is, this YN/2 term corresponds to multiplying yn by a

non-Hermitian matrix

−
[π
L
N
]2

c0
c1

. . .
cN−2

cN−1

1
−1
...

(−1)N−2

(−1)N−1

[
1 −1 · · · (−1)N−2 (−1)N−1

]
/N,

where the [· · ·]/N row vector multiplied by a yn column vector gives YN/2. Breaking the Hermitian property
is a terrible thing for many applications, because it alters the qualitative behavior the operator in a PDE
or ODE setting. Hermitian matrices are also very desirable for many linear-algebra techniques. We could
simply throw out the YN/2 term entirely, but that causes other problems (it increases the nullspace of the
operator, as mentioned in the previous section). What went wrong? The problem is that we have implicitly
done something non-symmetrical in the way we approximated the operator: by multiplying YN/2 cos(πNx/L)
by c(x), we have allowed the unsampled/interpolated output to contain larger Fourier components than the
input. Instead, since cos(πNx/L) is already at the maximum allowed frequency (the Nyquist frequency), it
makes sense to discard all but the zeroth Fourier component of c(x) when multiplying by cos(πNx/L). The
zeroth Fourier component is just the average of c(x), and hence we obtain a (low-pass filtered) contribution:

−
∑N−1
m=0 cm
N

[π
L
N
]2
YN/2(−1)n.

The resulting procedure to compute un = u(nL/N) = [cy′]′|nL/N by FFTs is given in Algorithm 3. We have

6

Algorithm 3 Compute the sampled position-varying second-derivative operation un ≈ u(nL/N) =
[cy′]′|nL/N from samples yn = y(nL/N) and a given coefficient function cn = c(nL/N).

1. Compute y′n by applying Algorithm 1 to yn, but save the original YN/2 Fourier coefficient (if N is
even).

2. Compute vn = cny
′
n for 0 ≤ n < N .

3. Compute un = v′n by applying Algorithm 1 to vn. However, before performing the inverse FFT of V ′k
(step 3 of Algorithm 1), change V ′N/2 (for N even) to V ′N/2 = −cmean

[
π
LN
]2
YN/2, using the YN/2

from step 1, where cmean = 1
N

∑N−1
m=0 cm.

Algorithm 4 Alternative to Algorithm 3 to compute the sampled position-varying second-derivative opera-
tion un ≈ u(nL/N) = [cy′]′|nL/N from samples yn = y(nL/N) and a given coefficient function cn = c(nL/N).

1. Compute y′n by applying Algorithm 1 to yn, except that we set Y ′N/2 = πi
LNYN/2 for even N .

2. Compute vn = cny
′
n for 0 ≤ n < N .

3. Compute un = v′n by applying Algorithm 1 to vn, except that we set V ′N/2 = πi
LNVN/2 for even N .

applied an additional trick to save some arithmetic: instead of adding the YN/2 correction separately to each
output n, we equivalently add it once to the Nyquist component V ′N/2 before the last inverse FFT. As desired,
Algorithm 3 corresponds to multiplying yn by a Hermitian matrix for the case of real cn, and its nullspace
consists only of constant vectors for cn > 0 (in which case the matrix is also negative semi-definite); in both
these senses it resembles the original differential operator. Note that for the case of cn = 1, Algorithm 3
gives exactly the same results as Algorithm 2 (neglecting roundoff errors).

You could object to this procedure, however, in that we were apparently inconsistent: why didn’t we
also worry about discarding Fourier component beyond the Nyquist frequency when we computed cny′n in
step 2? (Our procedure allows the small high-frequency Fourier components of the product, those beyond
the Nyquist frequency, to add to the low-frequency components by aliasing.) Of course, we could have
explicitly done some low-pass filtering before multiplying, or alternatively zero-padded both Yk and Ck in
Fourier domain to a length ≥ 2N − 1 (corresponding to using a roughly doubled-resolution interpolation
when multiplying cny′n) so that we have room for the extra Fourier coefficients, only truncating back to
the coarser grid at the end. (Signal-processing people will recognize such zero-padding as turning a cyclic
convolution of the Fourier coeffients into a linear convolution.) However, this more complicated (and more
expensive) procedure doesn’t alter the asymptotic convergence rate of un to the exact u(x) as N →∞, nor
is it necessary to preserve the Hermitian, definiteness, or nullspace properties.

Actually, there is an algorithm even slightly simpler than Algorithm 3 which also preserves the Hermitian,
definiteness, and nullspace properties of d

dxc
d
dx , has the same asymptotic convergence rate, and similarly

reduces to Algorithm 2 for cn = 1. In this alternative, we perform the first derivative, multiply by cn, and
then perform another first derivative as before, but we modify the first-derivative operation from Algorithm 1
to multiply the YN/2 coefficient by +πi

LN (i.e., we treat it as a “positive” frequency, abandoning minimal-
oscillation interpolation for this term) instead of zero. Because we perform two first derivatives, this doesn’t

7

cause the problems it would for a single first derivative (e.g. it still produces real outputs for real inputs6),
and because this only differs from minimal-oscillation interpolation by a multiple of YN/2, it doesn’t change
the asymptotic convergence rate. This algorithm is given in Algorithm 4.

In Algorithm 4, we arbitrarily assigned a positive frequency +πi
LN to the N/2 components. We could

equally well have assigned the N/2 components a negative frequency −πiLN , and this arbitrariness may feel a
bit unsatisfactory even if it doesn’t hurt the convergence rate or algebraic properties. In order to restore the
symmetry of the spectrum, we might adopt an approach inspired by the minimal-oscillation interpolation,
and average the two cases: that is, perform both the +πi

LN and the −πiLN variants of Algorithm 4, and
then average the two results. This seems like twice as much work, but if we are clever we can work through
the consequences of this averaging analytically and come up with a combined algorithm. The resulting
“averaged” algorithm, however, turns out to be exactly Algorithm 3! (The proof is left as an exercise for the
reader.) That is, this perspective gives us an another justification, besides the low-pass filtering argument
above, for using the cmean factor in Algorithm 3.

One might naively imagine another alternative: apply the product rule to compute u = c′y′ + cy′′, i.e.
un ≈ c′ny

′
n + cny

′′
n where the individual derivatives are computed as described in Algorithms 1–2. However,

because we are approximating the derivative operations via sampling, the product rule is no longer exact,
and this approach gives different results from either of the algorithms above. Worse, this method does not
preserve the Hermitian property of the operator for real c(x), and so I would not recommend it.

5 Higher spatial dimensions
Analogous procedures apply to rectangular domains in higher spatial dimensions, because the higher-
dimensional DFT and Fourier series are just direct products—they correspond to successive Fourier trans-
forms along each dimension in sequence. So, you just apply the same rules along each dimension. To illustrate
this, consider two dimensions: a periodic function y(x1, x2) in a rectangular domain [0, L1] × [0, L2], dis-
cretized into N1 × N2 points as yn1,n2

= y(n1L1/N1, n2L2/N2). The corresponding two-dimensional DFT
and inverse DFT are:

Yk1,k2 =
1

N1N2

N1−1∑

n1=0

N2−1∑

n2=0

yn1,n2
e−

2πi
N1

n1k1− 2πi
N2

n2k2 ,

yn1,n2
=

N1−1∑

k1=0

N2−1∑

k2=0

Yk1,k2e
+ 2πi
N1

n1k1+
2πi
N2

n2k2 .

To compute a single derivative like ∂y
∂x1

or ∂2y
∂x2

1
, we only need 1D FFTs: we can apply Algorithm 1 or 2 along

the n1 direction, once for each n2. It is more interesting to consider a differential operatosr that involves
derivatives along both directions at once, like the Laplacian ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2
. The computation of u = ∇2y

follows straightforwardly from appling Algorithm 2 to Y along both directions, and is given in Algorithm 5.
An analogue of d

dx [c dydx] in higher dimensions is ∇ · [c∇y], where c(~x) is in general a square matrix. The
principle here is similar to that of Algorithm 3: apply first derivatives (similar to Algorithm 1) along each
direction to obtain the vector field ∇y, multiply by c(~x) in the space domain, and then apply first derivatives

6For the case of real inputs yn and cn, it is desirable to use specialized FFT algorithms that exploit this fact to save a factor
of ∼ 2 in time and storage. Superficially, the intermediate steps of Algorithms 3–4 are problematic in this context because vn
is purely imaginary rather than purely real. Because of the linearity of the DFT, however, we can instead simply factor out the
i coefficients from the 2πi

L
multiplications in steps 1 and 3 and combine them into a factor of i2 = −1. That is, we multiply by

(e.g.) 2π
L

factors in step 1 and by − 2π
L

factors in step 3, which gives the same final result and ensures real arrays at step 2.

8

Algorithm 5 Compute the sampled 2d Laplacian u = ∇2y from samples yn1,n2
= y(n1L1/N1, n2L2/N2).

1. Compute Yk1,k2 using a 2D FFT of yn1,n2 for 0 ≤ k1 < N1 and 0 ≤ k2 < N2.

2. Define k′{1,2} =

{
k{1,2} k{1,2} ≤ N{1,2}/2
k{1,2} −N{1,2} otherwise

. Set Uk1,k2 = −
[(

2π
L1
k′1
)2

+
(

2π
L2
k′2
)2]

Yk1,k2 .

3. Compute un1,n2
from the inverse 2D FFT of Uk1,k2 .

(again similar to Algorithm 1) to each component and sum them to compute the final divergence. As in
Algorithm 3, however, the N/2 Nyquist components along each direction should be added in separately
to preserve the key algebraic properties of ∇ · [c∇y]. For example, the 2d case, with a scalar function c
(rather than the more general case of a 2× 2 matrix c), is given in Algorithm 6. Although the principles are
similar to those of Algorithm 3, the execution here is a bit more complicated. There are several choices of
how to arrange the transforms, since we can push certain terms before or after FFTs as desired (similar to
how the Nyquist correction was pushed before the inverse FFT into V ′N/2 in Algorithm 3). Here, we have

arranged things in terms of 1D auxiliary arrays A({1,2})
k{1,2}

in order to keep all of the 2D transforms in the
form of unmodified 2D FFTs (rather than breaking them up into 1D FFTs, which is both inconvenient and
probably slower). To understand Algorithm 6, it might help to consider the case of cn1,n2 = 1: in this case,
A

(1)
k1

= Yk1,N2/2 and A(2)
k2

= YN1/2,k2 , making the algorithm equivalent to Algorithm 5 for ∇2y .
The complexity of Algorithm 6, however, makes it attractive to instead consider the alternative of aban-

doning the original minimal-oscillation interpolation criterion, similar to Algorithm 4, and simply assign a
positive frequency to the Nyquist components. This results in a far simpler algorithm in the multidimensional
case, as shown in Algorithm 7, while preserving the key algebraic properties of the ∇ · c∇ operator. As for
Algorithm 5, because we only change the interpolation by a factor proportional to the Nyquist components,
the asymptotic convergence rate is not affected, and because there are two derivatives the bad side effects
of breaking the symmetry of the first derivative are avoided (real inputs give real outputs). This algorithm
has the added benefit that it works without modification when c is a 2× 2 matrix.

6 Non-periodic functions
All of the above applies to spectral differentiation of periodic functions y(x). If the function is non-periodic,
artifacts will appear in the derivatives due to the implicit discontinuities at the endpoints. If you have
the freedom to sample your function anywhere you want, a much better solution is to sample y(x) at
xn = cos(nπ/N) for n = 0, . . . , N , assuming a domain x ∈ [−1,−1], and then to use Chebyshev interpolation.
Chebyshev interpolation and differentiation also works via FFTs, and is essentially a Fourier series via a
change of variables x = cos θ. Chebyshev approximation is described in many sources you can find elsewhere,
such as the books by L. N. Trefethen (author of the excellent chebfun package) or J. P. Boyd, both freely
available online.

9

Algorithm 6 Computed the sampled 2d Laplacian-like operation u = ∇ · [c∇y] from samples yn1,n2
=

y(n1L1/N1, n2L2/N2), where cn1,n2
= c(n1L1/N1, n2L2/N2) is an arbitrary scalar coefficient function. (This

gives identical results to Algorithm 5 when cn1,n2 = 1.) See also Algorithm 7 for a simpler approach that
achieves similar accuracy and other properties.

1. Compute the 2-component vector field ~gn1,n2 ≈ ∇y:

(a) Compute Yk1,k2 using a 2D FFT of yn1,n2
for 0 ≤ k1 < N1 and 0 ≤ k2 < N2.

(b) Define k′{1,2} =

k{1,2} k{1,2} < N{1,2}/2

k{1,2} −N{1,2} k{1,2} > N{1,2}/2

0 k{1,2} = N{1,2}/2

. Set ~Gk1,k2 =

[2πi
L1
k′1

2πi
L2
k′2

]
Yk1,k2 (i.e. ~G is a

2-component vector field).

(c) Save YN1/2,k2 (if N1 is even) for all k2, and save Yk1,N2/2, (if N2 is even) for all k1—these will be
used again in step 3.

(d) Compute ~gn1,n2 from the inverse 2D FFTs of both components of ~Gk1,k2 .

2. Compute the 2-component vector field ~vn1,n2
= cn1,n2

~gn1,n2
.

3. Compute two auxiliary arrays A(1)
k1

(if N2 is even) and A(2)
k2

(if N1 is even) from the saved Nyquist data:

(a) Compute cmean,n2
=

PN1−1
n1=0 cn1,n2

N1
and cn1,mean =

PN2−1
n2=0 cn1,n2

N2
.

(b) Perform inverse 1D FFTs of YN1/2,k2 and Yk1,N1/2 to obtain ŷN1/2,n2
and ŷn1,N2/2, respectively.

(c) Compute a(1)n1 = cn1,mean · ŷn1,N2/2 and a(2)n2 = cmean,n2
· ŷN1/2,n2

.

(d) Perform 1D FFTs of a(1)n1 and a(2)n2 to obtain A(1)
k1

and A(2)
k2

, respectively.

4. Compute un1,n2
≈ ∇ · [c∇y] from ∇ · ~v:

(a) Compute ~Vk1,k2 using 2D FFTs of both components of ~vn1,n2 .

(b) Define k′{1,2} as in step 1(b). Set Uk1,k2 =
[

2πi
L1
k′1

2πi
L2
k′2
]
~Vk1,k2 (i.e., multiply the row vector

[· · ·] by the column vector ~Vk1,k2).

(c) If N1 is even, add −
(
π
L1
N1

)2
A

(2)
k2

to UN1/2,k2 . If N2 is even, add −
(
π
L2
N2

)2
A

(1)
k1

to Uk1,N2/2.
(Note that UN1/2,N2/2 has both of these factors added to it.)

(d) Compute un1,n2 from the inverse 2D FFT of Uk1,k2 .

10

Algorithm 7 Alternative (analogous to Algorithm 4) to Algorithm 6 to compute the sampled 2d
Laplacian-like operation u = ∇ · [c∇y] from samples yn1,n2 = y(n1L1/N1, n2L2/N2), where cn1,n2 =
c(n1L1/N1, n2L2/N2) is an arbitrary coefficient function (either a scalar or a 2 × 2 matrix). (This gives
identical results to Algorithm 5 when cn1,n2

= 1.)
1. Compute the 2-component vector field ~gn1,n2 ≈ ∇y:

(a) Compute Yk1,k2 using a 2D FFT of yn1,n2 for 0 ≤ k1 < N1 and 0 ≤ k2 < N2.

(b) Define k′{1,2} =

{
k{1,2} k{1,2} ≤ N{1,2}/2
k{1,2} −N{1,2} otherwise

. Set ~Gk1,k2 =

[2πi
L1
k′1

2πi
L2
k′2

]
Yk1,k2 (i.e. ~G is a

2-component vector field).

(c) Compute ~gn1,n2
from the inverse 2D FFTs of both components of ~Gk1,k2 .

2. Compute the 2-component vector field ~vn1,n2
= cn1,n2

~gn1,n2
.

3. Compute un1,n2 ≈ ∇ · [c∇y] from ∇ · ~v:

(a) Compute ~Vk1,k2 using 2D FFTs of both components of ~vn1,n2
.

(b) Define k′{1,2} as in step 1(b). Set Uk1,k2 =
[

2πi
L1
k′1

2πi
L2
k′2
]
~Vk1,k2 (i.e., multiply the row vector

[· · ·] by the column vector ~Vk1,k2).

(c) Compute un1,n2 from the inverse 2D FFT of Uk1,k2 .

11

